Increased novelty-induced locomotion, sensitivity to amphetamine, and extracellular dopamine in striatum of Zdhhc 15-deficient mice

0
37

  • 1.

    Thomas, R., Sanders, S., Doust, J., Beller, E. & Glasziou, P. Prevalence of attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Pediatrics 135, e994–e1001 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • 2.

    Fayyad, J. et al. Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder. Br. J. Psychiatry 190, 402–409 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 3.

    Faraone, S., Biederman, J. & Mick, E. The age-dependent decline of attention deficit hyperactivity disorder: a meta analysis of follow-up studies. Psychol. Med. 36, 159–165 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Burt, S. Rethinking environmental contributions to child and adolescent psychopathology: a meta-analysis of shared environmental influences. Psychol. Bull. 135, 608–637 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Chang, Z., Lichtenstein, P., Asherson, P. & Larsson, H. Developmental twin study of attention problems: high heritabilities throughout development. JAMA Psychiatry 70, 311–318 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Pingault, J.-B. et al. Genetic and environmental influences on the developmental course of attention-deficit/hyperactivity disorder symptoms from childhood to adolescence. JAMA Psychiatry 72, 651–658 (2019).

    Article 

    Google Scholar
     

  • 7.

    Cloninger, C., Svrakic, D. & Przybeck, T. A psychobiological model of temperament and character. Arch. Gen. Psychiatry 50, 975–990 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Downey, K., Stelson, F., Pomerleau, O. & Giordani, B. Adult attention deficit hyperactivity disorder: psychological test profiles in a clinical population. J. Nerv. Ment. Dis. 185, 32–38 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 9.

    Lynn, D. et al. Temperament and character profiles and the dopamine D4 receptor gene in ADHD. Am. J. Psychiatry 162, 906–914. (2005).

    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Anckarsäter, H. et al. The impact of ADHD and autism spectrum disorders on temperament, character, and personality development. Am. J. Psychiatry 163, 1239–1244 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • 11.

    Jacob, C. et al. Co-morbidity of adult attention-deficit/hyperactivity disorder with focus on personality traits and related disorders in a tertiary referral center. Eur. Arch. Psychiatry Clin. Neurosci. 257, 309–317 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Faraone, S., Kunwar, A., Adamson, J. & Biederman, J. Personality traits among ADHD adults: implications of late onset and subthreshold diagnoses. Psychol. Med. 39, 685–693 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 13.

    Salgado, C. et al. Inattention and hyperactivity dimensions of ADHD are associated with different personality profiles. Psychopathology 42, 108–112 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • 14.

    Smalley, S. et al. Mindfulness and attention deficit hyperactivity disorder. J. Clin. Psychol. 65, 1087–1098 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    Merwood, A., Asherson, P. & Larsson, H. Genetic associations between the ADHD symptom dimensions and Cloninger’s temperament dimensions in adult twins. Eur. Neuropsychopharmacol. 23, 416–425 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 16.

    Piazza, P. et al. Dopaminergic activity is reduced in the prefrontal cortex and increased in the nucleus accumbens of rats predisposed to develop amphetamine self-administration. Brain Res. 567, 169–174 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 17.

    Hooks, M., Colvin, A., Juncos, J. & Justice, J. Individual differences in basal and cocaine-stimulated extracellular dopamine in the nucleus accumbens using quantitative microdialysis. Brain Res. 587, 306–312 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Lisman, J. & Grace, A. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 19.

    Krebs, R., Heipertz, D., Schuetze, H. & Duzel, E. Novelty increases the mesolimbic functional connectivity of the substantia nigra/ventral tegmental area (SN/VTA) during reward anticipation: evidence from high-resolution fMRI. Neuroimage 58, 647–655 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 20.

    Linder, M. & Deschenes, R. Palmitoylation: policing protein stability and traffic. Nat. Rev. Mol. Cell Biol. 8, 74–84 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 21.

    Gao, X. & Hannoush, R. A decade of click chemistry in protein palmitoylation: impact on discovery and new biology. Cell Chem. Biol. 25, 236–246 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Tabaczar, S., Czogalla, A., Podkalicka, J., Biernatowska, A. & Sikorski, A. Protein palmitoylation: palmitoyltransferases and their specificity. Exp. Biol. Med. 242, 1150–1157 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Hornemann, T. Palmitoylation and depalmitoylation defects. J. Inherit. Metab. Dis. 38, 179–186 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 24.

    Mukai, J. et al. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat. Genet. 36, 725–731 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 25.

    Shen, L. et al. Role of S-palmitoylation by ZDHHC13 in mitochondrial function and metabolism in liver. Sci. Rep. 7, 2182 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 26.

    Zhou, T. et al. Palmitoyl acyltransferase Aph2 in cardiac function and the development of cardiomyopathy. Proc. Natl Acad. Sci. USA 112, 15666–15671 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Beard, R. et al. Palmitoyl acyltransferase DHHC21 mediates endothelial dysfunction in systemic inflammatory response syndrome. Nat. Commun. 7, 12823 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 28.

    Raymond, F. et al. Mutations in ZDHHC9, which encodes a palmitoyltransferase of NRAS and HRAS, cause X-linked mental retardation associated with a marfanoid habitus. Am. J. Hum. Genet. 80, 982–987 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 29.

    Sanders, S. et al. Curation of the mammalian palmitoylome indicates a pivotal role for palmitoylation in diseases and disorders of the nervous system and cancers. PLoS Comput. Biol. 11, e1004405 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 30.

    Fukata, Y. & Fukata, M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat. Rev. Neurosci. 11, 161–175 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 31.

    Huang, K. & El-Husseini, A. Modulation of neuronal protein trafficking and function by palmitoylation. Curr. Opin. Neurobiol. 15, 527–525. (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 32.

    Globa, A. & Bamji, S. Protein palmitoylation in the development and plasticity of neuronal connections. Curr. Opin. Neurobiol. 45, 210–220 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 33.

    Holland, S. & Thomas, G. Roles of palmitoylation in axon growth, degeneration and regeneration. J. Neurosci. Res. 95, 1528–1539 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 34.

    Bolland, D., Moritz, A., Stanislowski, D., Vaughan, R. & Foster, J. Palmitoylation by multiple DHHC enzymes enhances dopamine transporter function and stability. ACS Chem. Neurosci. 10, 2707–2717 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Foster, J. & Vaughan, R. Palmitoylation controls dopamine transporter kinetics, degradation, and protein kinase c-dependent regulation. J. Biol. Chem. 286, 5175–5186 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 36.

    Rastedt, D., Vaughan, R. & Foster, J. Palmitoylation mechanisms in dopamine transporter regulation. J. Chem. Neuroanat. 83, 3–9 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 37.

    Kong, M., Verma, V., O’Dowd, B. & George, S. The role of palmitoylation in directing dopamine D1 receptor internalization through selective endocytic routes. Biochem. Biophys. Res. Commun. 405, 445–449 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    Zhang, X. et al. Palmitoylation on the carboxyl terminus tail is required for the selective regulation of dopamine D2 versus D3 receptors. Biochim. Biophys. Acta 1858, 2152–2162 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 39.

    Zhang, X. & Kim, K. Palmitoylation of the carboxyl-terminal tail of dopamine D4 receptor is required for surface expression, endocytosis, and signaling. Biochem. Biophys. Res. Commun. 479, 398–403 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 40.

    Linder, M. et al. Lipid modifications of G proteins: α Subunits are palmitoylated. Proc. Natl Acad. Sci. USA 90, 3675–3679 (2002).

    Article 

    Google Scholar
     

  • 41.

    Ponimaskin, E. et al. The 5-hydroxytryptamine(4a) receptor is palmitoylated at two different sites, and acylation is critically involved in regulation of receptor constitutive activity. J. Biol. Chem. 277, 2534–2546 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 42.

    Klein, M. et al. Dopamine: functions, signaling, and association with neurological diseases. Cell Mol. Neurobiol. 39, 31–59 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 43.

    Grace, A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci. 17, 524–532 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 44.

    Wang, F. et al. Zdhhc15b regulates differentiation of diencephalic dopaminergic neurons in zebrafish. J. Cell Biochem. 116, 2980–2991 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 45.

    Shah, B., Shimell, J. & Bamji, S. Regulation of dendrite morphology and excitatory synapse formation by zDHHC15. J. Cell Sci. 132, jcs230052 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 46.

    Fukata, M., Fukata, Y., Adesnik, H., Nicoll, R. & Bredt, D. Identification of PSD95 palmitoylating enzymes. Neuron 44, 987–996 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 47.

    Greaves, J. & Chamberlain, L. DHHC palmitoyl transferases: substrate interactions and (patho)physiology. Trends Biochem. Sci. 36, 245–253 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 48.

    Mansouri, M. et al. Loss of ZDHHC15 expression in a woman with a balanced translocation t(X;15)(q13.3;cen) and severe mental retardation. Eur. J. Hum. Genet. 13, 970–977 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 49.

    Piton, A., Redin, C. & Mandel, J. XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing. Am. J. Hum. Genet. 93, 368–383 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 50.

    Moysés-Oliveira, M. et al. X-linked intellectual disability related genes disrupted by balanced X-autosome translocations. Am. J. Med. Genet. 168, 669–677 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 51.

    West, M. New stereological methods for counting neurons. Neurobiol. Aging 14, 275–285 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 52.

    Tandrup, T., Gundersen, H. & Jensen, E. The optical rotator. J. Microsc. 186, 108–120 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 53.

    Wan, J., Roth, A., O’Bailey, A. & Davis, N. Palmitoylated proteins: purification and identification. Nat. Protoc. 2, 1573–1584 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 54.

    Krasnova, I. et al. Neonatal dopamine depletion induces changes in morphogenesis and gene expression in the developing cortex. Neurotox. Res. 11, 107–130 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 55.

    Niwa, M. et al. Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science 339, 335–339 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 56.

    Giros, B., Jaber, M., Jones, S., Wightman, R. & Caron, M. hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 606–612 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 57.

    Leo, D. et al. Pronounced hyperactivity, cognitive dysfunctions, and BDNF dysregulation in dopamine transporter knock-out rats. J. Neurosci. 38, 1959–1972 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 58.

    Faraone, S. The pharmacology of amphetamine and methylphenidate: relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci. Biobehav. Rev. 87, 255–270 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 59.

    Pogorelov, V., Rodriguiz, R., Insco, M., Caron, M. & Wetsel, W. Novelty seeking and stereotypic activation of behavior in mice with disruption of the Dat1 gene. Neuropsychopharmacology 30, 1818–1831 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 60.

    Ford, C. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience 282, 13–22 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 61.

    Tsutsumi, R., Fukata, Y. & Fukata, M. Discovery of protein-palmitoylating enzymes. Pflug. Arch. 456, 1199–1206 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 62.

    Wood, A., Rijsdijk, F., Asherson, P. & Kuntsi, J. Inferring causation from cross-sectional data: examination of the causal relationship between hyperactivity-impulsivity and novelty seeking. Front Genet. 2, 6 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 63.

    Ljungberg, T., Apicella, P. & Schultz, W. Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol. 67, 145–163 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 64.

    Horvitz, J., Stewart, T. & Jacobs, B. Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat. Brain Res. 759, 251–258 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 65.

    Ebstein, R. et al. Dopamine D4 receptor (DRD4) exon III polymorphism associated with the human personality trait of novelty seeking. Nat. Genet. 12, 78–80 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 66.

    Ebstein, R. Saga of an adventure gene: novelty seeking, substance abuse and the dopamine D4 receptor exon III repeat polymorphism. Mol. Psychiatry 2, 381–384 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 67.

    Lusher, J. & Ball, D. Dopamine D4 receptor gene (DRD4) is associated with Novelty Seeking (NS) and substance abuse: the saga continues. Mol. Psychiatry 6, 497–499 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here