Latent brain state dynamics distinguish behavioral variability, impaired decision-making, and inattention

0
40

  • 1.

    Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry. 2007;164:942–8.

    PubMed 
    Article 

    Google Scholar
     

  • 2.

    Kofler MJ, Rapport MD, Sarver DE, Raiker JS, Orban SA, Friedman LM, et al. Reaction time variability in ADHD: a meta-analytic review of 319 studies. Clin Psychol Rev. 2013;33:795–811.

    PubMed 
    Article 

    Google Scholar
     

  • 3.

    Lijffijt M, Kenemans JL, Verbaten MN, van Engeland H. A meta-analytic review of stopping performance in attention-deficit/hyperactivity disorder: deficient inhibitory motor control? J Abnorm Psychol. 2005;114:216–22.

    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Castellanos FX, Sonuga-Barke EJ, Scheres A, Di Martino A, Hyde C, Walters JR. Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biol Psychiatry. 2005;57:1416–23.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 5.

    Vaurio RG, Simmonds DJ, Mostofsky SH. Increased intra-individual reaction time variability in attention-deficit/hyperactivity disorder across response inhibition tasks with different cognitive demands. Neuropsychologia. 2009;47:2389–96.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 6.

    Cai W, Chen T, Szegletes L, Supekar K, Menon V. Aberrant time-varying cross-network interactions in children with attention-deficit/hyperactivity disorder and the relation to attention deficits. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:263–73.

    PubMed 

    Google Scholar
     

  • 7.

    Sonuga-Barke EJ, Castellanos FX. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev. 2007;31:977–86.

    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Cuthbert BN, Insel TR. Toward new approaches to psychotic disorders: the NIMH Research Domain Criteria project. Schizophr Bull. 2010;36:1061–2.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 9.

    Musser ED, Raiker JS Jr. Attention-deficit/hyperactivity disorder: an integrated developmental psychopathology and Research Domain Criteria (RDoC) approach. Compr Psychiatry. 2019;90:65–72.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 10.

    Cai W, Duberg K, Padmanabhan A, Rehert R, Bradley T, Carrion V, et al. Hyperdirect insula-basal-ganglia pathway and adult-like maturity of global brain responses predict inhibitory control in children. Nat Commun. 2019;10:4798.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 11.

    Crittenden BM, Mitchell DJ, Duncan J. Task encoding across the multiple demand cortex is consistent with a frontoparietal and cingulo-opercular dual networks distinction (vol 36, pg 6147, 2017). J Neurosci. 2017;37:6388–6388.

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE. Intrinsic and task-evoked network architectures of the human brain. Neuron. 2014;83:238–51.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Cole MW, Ito T, Bassett DS, Schultz DH. Activity flow over resting-state networks shapes cognitive task activations. Nat Neurosci. 2016;19:1718–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Dove A, Pollmann S, Schubert T, Wiggins CJ, von Cramon DY. Prefrontal cortex activation in task switching: an event-related fMRI study. Brain Res Cogn Brain Res. 2000;9:103–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 15.

    Leung HC, Skudlarski P, Gatenby JC, Peterson BS, Gore JC. An event-related functional MRI study of the stroop color word interference task. Cereb cortex. 2000;10:552–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 16.

    Leung HC, Cai W. Common and differential ventrolateral prefrontal activity during inhibition of hand and eye movements. J Neurosci. 2007;27:9893–9900.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 17.

    McNab F, Leroux G, Strand F, Thorell L, Bergman S, Klingberg T. Common and unique components of inhibition and working memory: an fMRI, within-subjects investigation. Neuropsychologia. 2008;46:2668–82.

    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Cai W, Ryali S, Chen T, Li CS, Menon V. Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets. J Neurosci. 2014;34:14652–67.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    Levy BJ, Wagner AD. Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann N Y Acad Sci. 2011;1224:40–62.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 20.

    Owen AM, McMillan KM, Laird AR, Bullmore E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp. 2005;25:46–59.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 21.

    Swick D, Ashley V, Turken U. Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. NeuroImage. 2011;56:1655–65.

    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Wager TD, Sylvester CY, Lacey SC, Nee DE, Franklin M, Jonides J. Common and unique components of response inhibition revealed by fMRI. NeuroImage. 2005;27:323–40.

    PubMed 
    Article 

    Google Scholar
     

  • 23.

    Anticevic A, Repovs G, Shulman GL, Barch DM. When less is more: TPJ and default network deactivation during encoding predicts working memory performance. NeuroImage. 2010;49:2638–48.

    PubMed 
    Article 

    Google Scholar
     

  • 24.

    Arsenault JT, Caspari N, Vandenberghe R, Vanduffel W. Attention shifts recruit the monkey default mode network. J Neurosci. 2018;38:1202–17.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 25.

    Crittenden BM, Mitchell DJ, Duncan J. Recruitment of the default mode network during a demanding act of executive control. Elife. 2015;4:e06481.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 26.

    Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT. Brain connectivity related to working memory performance. J Neurosci. 2006;26:13338–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 27.

    Cortese S, Kelly C, Chabernaud C, Proal E, Di Martino A, Milham MP, et al. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry. 2012;169:1038–55.

    PubMed 
    Article 

    Google Scholar
     

  • 28.

    Dickstein SG, Bannon K, Castellanos FX, Milham MP. The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. J Child Psychol Psychiatry. 2006;47:1051–62.

    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Hart H, Radua J, Mataix-Cols D, Rubia K. Meta-analysis of fMRI studies of timing in attention-deficit hyperactivity disorder (ADHD). Neurosci Biobehav Rev. 2012;36:2248–56.

    PubMed 
    Article 

    Google Scholar
     

  • 30.

    Norman LJ, Carlisi C, Lukito S, Hart H, Mataix-Cols D, Radua J, et al. Structural and functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder: a comparative meta-analysis. JAMA Psychiatry. 2016;73:815–25.

    PubMed 
    Article 

    Google Scholar
     

  • 31.

    Cai W, Griffiths K, Korgaonkar MS, Williams LM, Menon V. Inhibition-related modulation of salience and frontoparietal networks predicts cognitive control ability and inattention symptoms in children with ADHD. Mol Psychiatry. 2019;1–10.

  • 32.

    Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry. 2008;63:332–7.

    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Elton A, Alcauter S, Gao W. Network connectivity abnormality profile supports a categorical-dimensional hybrid model of ADHD. Hum Brain Mapp. 2014;35:4531–43.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 34.

    Fair DA, Posner J, Nagel BJ, Bathula D, Dias TG, Mills KL, et al. Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2010;68:1084–91.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Epstein JN, Hwang ME, Antonini T, Langberg JM, Altaye M, Arnold LE. Examining predictors of reaction times in children with ADHD and normal controls. J Int Neuropsychol Soc. 2010;16:138–47.

    PubMed 
    Article 

    Google Scholar
     

  • 36.

    Tamm L, Narad ME, Antonini TN, O’Brien KM, Hawk LW Jr, Epstein JN. Reaction time variability in ADHD: a review. Neurotherapeutics. 2012;9:500–8.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 37.

    Smith PL, Ratcliff R. An integrated theory of attention and decision making in visual signal detection. Psychol Rev. 2009;116:283–317.

    PubMed 
    Article 

    Google Scholar
     

  • 38.

    Taghia J, Cai WD, Ryali S, Kochalka J, Nicholas J, Chen TW, et al. Uncovering hidden brain state dynamics that regulate performance and decision-making during cognition. Nat Commun. 2018;9:1–19.

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Braun U, Schafer A, Walter H, Erk S, Romanczuk-Seiferth N, Haddad L, et al. Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc Natl Acad Sci USA. 2015;112:11678–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 40.

    Kitzbichler MG, Henson RN, Smith ML, Nathan PJ, Bullmore ET. Cognitive effort drives workspace configuration of human brain functional networks. J Neurosci. 2011;31:8259–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    Shine JM, Bissett PG, Bell PT, Koyejo O, Balsters JH, Gorgolewski KJ, et al. The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron. 2016;92:544–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 42.

    Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, et al. Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage. 2013;80:360–78.

    PubMed 
    Article 

    Google Scholar
     

  • 43.

    Cai W, Chen T, Ide JS, Li CR, Menon V. Dissociable fronto-operculum-insula control signals for anticipation and detection of inhibitory sensory cue. Cereb Cortex. 2017;27:4073–82.

    PubMed 

    Google Scholar
     

  • 44.

    Shenoy P, Yu AJ. Rational decision-making in inhibitory control. Front Hum Neurosci. 2011;5;48.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 45.

    Ceccarini F, Castiello U. The grasping side of post-error slowing. Cognition. 2018;179:1–13.

    PubMed 
    Article 

    Google Scholar
     

  • 46.

    Klein C, Wendling K, Huettner P, Ruder H, Peper M. Intra-subject variability in attention-deficit hyperactivity disorder. Biol Psychiatry. 2006;60:1088–97.

    PubMed 
    Article 

    Google Scholar
     

  • 47.

    Ratcliff R, Murdock BB. Retrieval processes in recognition memory. Psychol Rev. 1976;83:190–214.

    Article 

    Google Scholar
     

  • 48.

    Heathcote A, Popiel SJ, Mewhort DJK. Analysis of response-time distributions – an example using the stroop task. Psychol Bull. 1991;109:340–7.

    Article 

    Google Scholar
     

  • 49.

    Kuntsi J, Klein C. Intraindividual variability in ADHD and its implications for research of causal links. Curr Top. Behav Neurosci. 2012;9:67–91.


    Google Scholar
     

  • 50.

    Willcutt EG, Doyle AE, Nigg JT, Faraone SV, Pennington BF. Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry. 2005;57:1336–46.

    PubMed 
    Article 

    Google Scholar
     

  • 51.

    Wiecki TV, Sofer I, Frank MJ. HDDM: hierarchical bayesian estimation of the drift-diffusion model in python. Front Neuroinform. 2013;7:14.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 52.

    Ratcliff R, McKoon G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 2008;20:873–922.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 53.

    Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33:1–22.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 54.

    Hoekzema E, Carmona S, Ramos-Quiroga JA, Fernandez VR, Bosch R, Soliva JC, et al. An independent components and functional connectivity analysis of resting state FMRI data points to neural network dysregulation in adult ADHD. Hum Brain Mapp. 2014;35:1261–72.

    PubMed 
    Article 

    Google Scholar
     

  • 55.

    Castellanos FX, Sonuga-Barke EJS, Milham MP, Tannock R. Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn Sci. 2006;10:117–23.

    PubMed 
    Article 

    Google Scholar
     

  • 56.

    Hervey AS, Epstein JN, Curry JF, Tonev S, Eugene Arnold L, Keith, et al. Reaction time distribution analysis of neuropsychological performance in an ADHD sample. Child Neuropsychol. 2006;12:125–40.

    PubMed 
    Article 

    Google Scholar
     

  • 57.

    Leth-Steensen C, Elbaz ZK, Douglas VI. Mean response times, variability, and skew in the responding of ADHD children: a response time distributional approach. Acta Psychol. 2000;104:167–90.

    CAS 
    Article 

    Google Scholar
     

  • 58.

    Schmiedek F, Oberauer K, Wilhelm O, Suss HM, Wittmann WW. Individual differences in components of reaction time distributions and their relations to working memory and intelligence. J Exp Psychol Gen. 2007;136:414–29.

    PubMed 
    Article 

    Google Scholar
     

  • 59.

    Hinshaw SP. Attention deficit hyperactivity disorder (ADHD): controversy, developmental mechanisms, and multiple levels of analysis. Annu Rev Clin Psychol. 2018;14:291–316.

    PubMed 
    Article 

    Google Scholar
     

  • 60.

    Nigg JT, Stavro G, Ettenhofer M, Hambrick DZ, Miller T, Henderson JM. Executive functions and ADHD in adults: evidence for selective effects on ADHD symptom domains. J Abnorm Psychol. 2005;114:706–17.

    PubMed 
    Article 

    Google Scholar
     

  • 61.

    Karalunas SL, Huang-Pollock CL, Nigg JT. Decomposing attention-deficit/hyperactivity disorder (ADHD)-related effects in response speed and variability. Neuropsychology. 2012;26:684–94.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 62.

    Metin B, Roeyers H, Wiersema JR, van der Meere JJ, Thompson M, Sonuga-Barke EJS. ADHD Performance reflects inefficient but not impulsive information processing: a diffusion model analysis. Neuropsychology. 2013;27:193–200.

    PubMed 
    Article 

    Google Scholar
     

  • 63.

    Castellanos FX, Tannock R. Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci. 2002;3:617–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 64.

    Gonen-Yaacovi G, Arazi A, Shahar N, Karmon A, Haar S, Meiran N, et al. Increased ongoing neural variability in ADHD. Cortex. 2016;81:50–63.

    PubMed 
    Article 

    Google Scholar
     

  • 65.

    Bonnelle V, Leech R, Kinnunen KM, Ham TE, Beckmann CF, De Boissezon X, et al. Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J Neurosci. 2011;31:13442–51.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 66.

    Esterman M, Noonan SK, Rosenberg M, Degutis J. In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cereb Cortex. 2013;23:2712–23.

    PubMed 
    Article 

    Google Scholar
     

  • 67.

    Rubia K, Halari R, Smith AB, Mohammad M, Scott S, Brammer MJ. Shared and disorder-specific prefrontal abnormalities in boys with pure attention-deficit/hyperactivity disorder compared to boys with pure CD during interference inhibition and attention allocation. J Child Psychol Psychiatry. 2009;50:669–78.

    PubMed 
    Article 

    Google Scholar
     

  • 68.

    Tomasi D, Volkow ND. Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2012;71:443–50.

    PubMed 
    Article 

    Google Scholar
     

  • 69.

    Kaboodvand N, Iravani B, Fransson P. Dynamic synergetic configurations of resting-state networks in ADHD. NeuroImage. 2020;207:116347.

    PubMed 
    Article 

    Google Scholar
     

  • 70.

    Cai WD, Chen TW, Ryali S, Kochalka J, Li CSR, Menon V. Causal interactions within a frontal-cingulate-parietal network during cognitive control: convergent evidence from a multisite-multitask investigation. Cereb Cortex. 2016;26:2140–53.

    PubMed 
    Article 

    Google Scholar
     

  • 71.

    Chen T, Cai W, Ryali S, Supekar K, Menon V. Distinct global brain dynamics and spatiotemporal organization of the salience network. PLoS Biol. 2016;14:e1002469.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 72.

    Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214:655–67.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 73.

    Sun L, Cao QJ, Long XY, Sui MQ, Cao XH, Zhu CZ, et al. Abnormal functional connectivity between the anterior cingulate and the default mode network in drug-naive boys with attention deficit hyperactivity disorder. Psychiat Res. 2012;201:120–7.

    Article 

    Google Scholar
     

  • 74.

    Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA. 2008;105:12569–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 75.

    Wen XT, Liu YJ, Yao L, Ding MZ. Top-down regulation of default mode activity in spatial visual attention. J Neurosci. 2013;33:6444–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 76.

    Biederman J, Mick E, Faraone SV. Age-dependent decline of symptoms of attention deficit hyperactivity disorder: Impact of remission definition and symptom type. Am J Psychiatry. 2000;157:816–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 77.

    Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.

    PubMed 
    Article 

    Google Scholar
     

  • 78.

    Zandbelt BB. exgauss: A MATLAB toolbox for fitting the ex‐Gaussian distribution to response time data. figshare. 2014.

  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here