Risk variants and polygenic architecture of disruptive behavior disorders in the context of attention-deficit/hyperactivity disorder

0
42

  • 1.

    Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Primers 1, 15020 (2015).

  • 2.

    Franke, B. et al. Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan. Eur. Neuropsychopharmacol. 28, 1059–1088 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 3.

    Fairchild, G. et al. Conduct disorder. Nat. Rev. Dis. Primers 5, 43 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Canino, G., Polanczyk, G., Bauermeister, J. J., Rohde, L. A. & Frick, P. J. Does the prevalence of CD and ODD vary across cultures? Soc. Psychiatry Psychiatr. Epidemiol. 45, 695–704 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 5.

    Nock, M. K., Kazdin, A. E., Hiripi, E. & Kessler, R. C. Lifetime prevalence, correlates, and persistence of oppositional defiant disorder: results from the National Comorbidity Survey Replication. J. Child Psychol. Psychiatry 48, 703–713 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Dalsgaard, S. et al. Incidence rates and cumulative incidences of the full spectrum of diagnosed mental disorders in childhood and adolescence. JAMA Psychiatry 77, 155–164 (2020).

  • 7.

    Scott, J. G. et al. Mortality in individuals with disruptive behavior disorders diagnosed by specialist services—A nationwide cohort study. Psychiatry Res. 251, 255–260 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Dalsgaard, S., Ostergaard, S. D., Leckman, J. F., Mortensen, P. B. & Pedersen, M. G. Mortality in children, adolescents, and adults with attention deficit hyperactivity disorder: a nationwide cohort study. Lancet 385, 2190–2196 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • 9.

    Larson, K., Russ, S. A., Kahn, R. S. & Halfon, N. Patterns of comorbidity, functioning, and service use for US children with ADHD, 2007. Pediatrics 127, 462–470 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 10.

    Maughan, B., Rowe, R., Messer, J., Goodman, R. & Meltzer, H. Conduct disorder and oppositional defiant disorder in a national sample: developmental epidemiology. J. Child Psychol. Psychiatry 45, 609–621 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 11.

    Smalley, S. L. et al. Prevalence and psychiatric comorbidity of attention-deficit/hyperactivity disorder in an adolescent Finnish population. J. Am. Acad. Child Adolesc. Psychiatry 46, 1575–1583 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 12.

    Biederman, J. et al. Is ADHD a risk factor for psychoactive substance use disorders? Findings from a four-year prospective follow-up study. J. Am. Acad. Child Adolesc. Psychiatry 36, 21–29 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 13.

    Groenman, A. P. et al. Substance use disorders in adolescents with attention deficit hyperactivity disorder: a 4-year follow-up study. Addiction 108, 1503–1511 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 14.

    Ottosen, C., Petersen, L., Larsen, J. T. & Dalsgaard, S. Gender differences in associations between attention-deficit/hyperactivity disorder and substance use disorder. J. Am. Acad. Child Adolesc. Psychiatry 55, 227–234 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 15.

    Dalsgaard, S., Mortensen, P. B., Frydenberg, M. & Thomsen, P. H. Conduct problems, gender and adult psychiatric outcome of children with attention-deficit hyperactivity disorder. Br. J. Psychiatry 181, 416–421 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 16.

    Pingault, J. B. et al. Childhood hyperactivity, physical aggression and criminality: a 19-year prospective population-based study. PLoS ONE 8, e62594 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 17.

    Mannuzza, S., Klein, R. G., Konig, P. H. & Giampino, T. L. Hyperactive boys almost grown up. IV. Criminality and its relationship to psychiatric status. Arch. Gen. Psychiatry 46, 1073–1079 (1989).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 18.

    Dekkers, T. J., Popma, A., Agelink van Rentergem, J. A., Bexkens, A. & Huizenga, H. M. Risky decision making in attention-deficit/hyperactivity disorder: a meta-regression analysis. Clin. Psychol. Rev. 45, 1–16 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 19.

    Faraone, S. V. & Larsson, H. Genetics of attention deficit hyperactivity disorder. Mol. Psychiatry 24, 562–575 (2019).

  • 20.

    Slutske, W. S. et al. Modeling genetic and environmental influences in the etiology of conduct disorder: a study of 2,682 adult twin pairs. J. Abnorm. Psychol. 106, 266–279 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 21.

    Goldstein, R. B., Prescott, C. A. & Kendler, K. S. Genetic and environemental factors in conduct problems and adult antisocial behavior among adult female twins. J. Nerv. Ment. Dis. 189, 201–209 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 22.

    Rose, R. J., Dick, D. M., Viken, R. J., Pulkkinen, L. & Kaprio, J. Genetic and environmental effects on conduct disorder and alcohol dependence symptoms and their covariation at age 14. Alcohol. Clin. Exp. Res. 28, 1541–1548 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 23.

    Thapar, A., Harrington, R. & McGuffin, P. Examining the comorbidity of ADHD-related behaviours and conduct problems using a twin study design. Br. J. Psychiatry 179, 224–229 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 24.

    Christiansen, H. et al. Co-transmission of conduct problems with attention-deficit/hyperactivity disorder: familial evidence for a distinct disorder. J Neural Transm. 115, 163–175 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 25.

    Faraone, S. V., Biederman, J., Mennin, D., Russell, R. & Tsuang, M. T. Familial subtypes of attention deficit hyperactivity disorder: a 4-year follow-up study of children from antisocial-ADHD families. J. Child Psychol. Psychiatry 39, 1045–1053 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 26.

    Hamshere, M. L. et al. High loading of polygenic risk for ADHD in children with comorbid aggression. Am. J. Psychiatry 170, 909–916 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 27.

    Dick, D. M., Viken, R. J., Kaprio, J., Pulkkinen, L. & Rose, R. J. Understanding the covariation among childhood externalizing symptoms: genetic and environmental influences on conduct disorder, attention deficit hyperactivity disorder, and oppositional defiant disorder symptoms. J. Abnorm. Child Psychol. 33, 219–229 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 28.

    Martin, N. C., Levy, F., Pieka, J. & Hay, D. A. A Genetic study of attention deficit hyperactivity disorder, conduct disorder, oppositional defiant disorder and reading disability: aetiological overlaps and implications. Int. J. Disabil. Dev. Educ. 53, 21–34 (2006).

    Article 

    Google Scholar
     

  • 29.

    Faraone, S. V., Biederman, J., Keenan, K. & Tsuang, M. T. Separation of DSM-III attention deficit disorder and conduct disorder: evidence from a family-genetic study of American child psychiatric patients. Psychol. Med. 21, 109–121 (1991).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 30.

    Knopik, V. S. et al. DSM-IV defined conduct disorder and oppositional defiant disorder: an investigation of shared liability in female twins. Psychol. Med. 44, 1053–1064 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    Dick, D. M. et al. Genome-wide association study of conduct disorder symptomatology. Mol. Psychiatry 16, 800–808 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 32.

    Aebi, M. et al. Gene-set and multivariate genome-wide association analysis of oppositional defiant behavior subtypes in attention-deficit/hyperactivity disorder. Am. J. Med. Genet. Part B 171, 573–588 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Pappa, I. et al. A genome-wide approach to children’s aggressive behavior: The EAGLE consortium. Am. J. Med. Genet. Part B 171, 562–572 (2016).

  • 34.

    Tielbeek, J. J. et al. Genome-wide association studies of a broad spectrum of antisocial behavior. JAMA Psychiatry 74, 1242–1250 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Anney, R. J. et al. Conduct disorder and ADHD: evaluation of conduct problems as a categorical and quantitative trait in the international multicentre ADHD genetics study. Am. J. Med. Genet. Part B 147B, 1369–1378 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 36.

    Brevik, E. J. et al. Genome-wide analyses of aggressiveness in attention-deficit hyperactivity disorder. Am. J. Med. Genet. Part B 171, 733–747 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 39.

    Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 40.

    de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 41.

    GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 43.

    Shao, J. & Wu, C. F. J. A general theory for Jackknife variance estimation. Ann. Stat. 17, 1176–1197 (1989).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 44.

    Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 45.

    Davies, G. et al. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151). Mol. Psychiatry 21, 758–767 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 46.

    Sniekers, S. et al. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nat. Genet. 49, 1107–1112 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 47.

    Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 48.

    Lee, P. H. et al. Genome wide meta-analysis identifies genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482 (2019).

  • 49.

    Schizophrenia Working Group of the Psychiatric Genomics. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 50.

    Ikeda, M. et al. A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Mol. Psychiatry 23, 639–647 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 51.

    Ruderfer, D. M. et al. Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Mol. Psychiatry 19, 1017–1024 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 52.

    Zhang, S. L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 53.

    Yen, M. & Lewis, R. S. Numbers count: How STIM and Orai stoichiometry affect store-operated calcium entry. Cell Calcium 79, 35–43 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 54.

    Klejman, M. E. et al. Expression of STIM1 in brain and puncta-like co-localization of STIM1 and ORAI1 upon depletion of Ca(2+) store in neurons. Neurochem. Int. 54, 49–55 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 55.

    Majewski, L. et al. Overexpression of STIM1 in neurons in mouse brain improves contextual learning and impairs long-term depression. Biochim. Biophys. Acta 1864, 1071–1087 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 56.

    Garcia-Alvarez, G. et al. Impaired spatial memory and enhanced long-term potentiation in mice with forebrain-specific ablation of the Stim genes. Front. Behav. Neurosci. 9, 180 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 57.

    Ferreira, M. A. et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat. Genet. 40, 1056–1058 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 58.

    Cross-Disorder Group of the Psychiatric Genomics. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

    Article 
    CAS 

    Google Scholar
     

  • 59.

    Nanou, E. & Catterall, W. A. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron 98, 466–481 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 60.

    Robinson, E. B. et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat. Genet. 48, 552–555 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 61.

    Bralten, J. et al. Autism spectrum disorders and autistic traits share genetics and biology. Mol. Psychiatry 23, 1205–1212 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 62.

    van Beijsterveldt, C. E., Bartels, M., Hudziak, J. J. & Boomsma, D. I. Causes of stability of aggression from early childhood to adolescence: a longitudinal genetic analysis in Dutch twins. Behav. Genet. 33, 591–605 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 63.

    Porsch, R. M. et al. Longitudinal heritability of childhood aggression. Am. J. Med. Genet. Part B 171, 697–707 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 64.

    Huesmann, L. R., Eron, L. D., Lefkowitz, M. M. & Walder, L. O. Stability of aggression over time and generations. Dev. Psychol. 20, 1120–1134 (1984).

    Article 

    Google Scholar
     

  • 65.

    Zoccolillo, M., Pickles, A., Quinton, D. & Rutter, M. The outcome of childhood conduct disorder: implications for defining adult personality disorder and conduct disorder. Psychol. Med. 22, 971–986 (1992).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 66.

    Erskine, H. E. et al. Long-term outcomes of attention-deficit/hyperactivity disorder and conduct disorder: a systematic review and meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 55, 841–850 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 67.

    Estevez, E., Jimenez, T. I. & Moreno, D. Aggressive behavior in adolescence as a predictor of personal, family, and school adjustment problems. Psicothema 30, 66–73 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Bierman, K. L. et al. School outcomes of aggressive-disruptive children: prediction from kindergarten risk factors and impact of the fast track prevention program. Aggress. Behav. 39, 114–130 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 69.

    Ainsworth, S. E. & Maner, J. K. Sex begets violence: mating motives, social dominance, and physical aggression in men. J. Pers. Soc. Psychol. 103, 819–829 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 70.

    Pedersen, C. B. et al. The iPSYCH2012 case-cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol. Psychiatry 23, 6–14 (2018).

  • 71.

    Borglum, A. D. et al. Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci. Mol. Psychiatry 19, 325–333 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 72.

    Hollegaard, M. V. et al. Robustness of genome-wide scanning using archived dried blood spot samples as a DNA source. BMC Genet. 12, 58 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 73.

    Mors, O., Perto, G. P. & Mortensen, P. B. The Danish Psychiatric Central Research Register. Scand. J. Public Health 39, 54–57 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • 74.

    Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2018).

  • 75.

    Lam, M. et al. RICOPILI: Rapid Imputation for COnsortias PIpeLIne. Bioinformatics https://doi.org/10.1093/bioinformatics/btz633 (2019).

  • 76.

    Delaneau, O., Marchini, J. & Zagury, J. F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2011).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 77.

    Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 1, 457–470 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • 78.

    1000 Genomes Project Consortium. An integrated map of genetic variation from 1092 human genomes. Nature 491, 56–65 (2012).

    Article 
    CAS 

    Google Scholar
     

  • 79.

    Price, A. L. et al. Long-range LD can confound genome scans in admixed populations. Am. J. Hum. Genet. 83, 132–135 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 80.

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 81.

    Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 82.

    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 83.

    Galinsky, K. J. et al. Fast principal-component analysis reveals convergent evolution of ADH1B in Europe and East Asia. Am. J. Hum. Genet. 98, 456–472 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 84.

    Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 85.

    Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–−82 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 86.

    GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article 
    CAS 

    Google Scholar
     

  • 87.

    Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 88.

    The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article 
    CAS 

    Google Scholar
     

  • 89.

    Hubel, C. et al. Genomics of body fat percentage may contribute to sex bias in anorexia nervosa. Am. J. Med. Genet. Part B 180, 428–438 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 90.

    Lee, S. H., Goddard, M. E., Wray, N. R. & Visscher, P. M. A better coefficient of determination for genetic profile analysis. Genet. Epidemiol. 36, 214–224 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here