Structural brain network topology underpinning ADHD and response to methylphenidate treatment

0
24

  • 1.

    Cortese, S. et al. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am. J. Psychiatry 169, 1038–1055 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • 2.

    Castellanos, F. X. & Proal, E. Large-scale brain systems in ADHD: beyond the prefrontal–striatal model. Trends Cogn. Sci. 16, 17–26 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • 3.

    Gao, Y. et al. Impairments of large-scale functional networks in attention-deficit/hyperactivity disorder: a meta-analysis of resting-state functional connectivity. Psychol. Med. 49, 2475–2485 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Sripada, C. et al. Disrupted network architecture of the resting brain in attention‐deficit/hyperactivity disorder. Hum. Brain Mapp. 35, 4693–4705 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 5.

    Weyandt, L., Swentosky, A. & Gudmundsdottir, B. G. Neuroimaging and ADHD: fMRI, PET, DTI findings, and methodological limitations. Dev. Neuropsychol. 38, 211–225 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Ashtari, M. et al. Attention-deficit/hyperactivity disorder: a preliminary diffusion tensor imaging study. Biol. Psychiatry 57, 448–455 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Witt, S. T. & Stevens, M. C. Relationship between white matter microstructure abnormalities and ADHD symptomatology in adolescents. Psychiatry Res. 232, 168–174 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 8.

    van Ewijk, H. et al. Diffusion tensor imaging in attention deficit/hyperactivity disorder: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 36, 1093–1106 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • 9.

    Francx, W. et al. White matter microstructure and developmental improvement of hyperactive/impulsive symptoms in attention‐deficit/hyperactivity disorder. J. Child Psychol. Psychiatry 56, 1289–1297 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 10.

    Sporns, O., Tononi, G. & Kötter, R. The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 11.

    Achard, S. & Bullmore, E. Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3, e17 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 12.

    Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Cao, M. et al. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder. Mol. Neurobiol. 50, 1111–1123 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 14.

    Honey, C. J., Thivierge, J.-P. & Sporns, O. Can structure predict function in the human brain?. Neuroimage 52, 766–776 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 15.

    Cao, Q. et al. Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder. J. Neurosci. 33, 10676–10687 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 16.

    Hong, S.-B. et al. Connectomic disturbances in attention-deficit/hyperactivity disorder: a whole-brain tractography analysis. Biol. Psychiatry 76, 656–663 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 17.

    Beare, R. et al. Altered structural connectivity in ADHD: a network based analysis. Brain Imaging Behav. 11, 846–858 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Fair, D. A. et al. Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biol. Psychiatry 68, 1084–1091 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    An, L. et al. Methylphenidate normalizes resting-state brain dysfunction in boys with attention deficit hyperactivity disorder. Neuropsychopharmacol. 38, 1287–1295 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Battel, L. et al. Intrinsic brain connectivity following long-term treatment with methylphenidate in children with attention-deficit/hyperactivity disorder. J. Child Adolesc. 26, 555–561 (2016).

    CAS 

    Google Scholar
     

  • 21.

    Rubia, K. et al. Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task. Neuropharmacol. 57, 640–652 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Silk, T. J. et al. The effect of single-dose methylphenidate on resting-state network functional connectivity in ADHD. Brain Imaging Behav. 11, 1422–1431 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 23.

    Teicher, M. H. et al. Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry. Nat. Med. 6, 470–473 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 24.

    Yang, Z. et al. Neural correlates of symptom improvement following stimulant treatment in adults with attention-deficit/hyperactivity disorder. J. Child Adolesc. Psychopharmacol. 26, 527–536 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 25.

    Greenhill, L. L. et al. Medication treatment strategies in the MTA study: relevance to clinicians and researchers. J. Am. Acad. Child Adolesc. Psychiatry 35, 1304–1313 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 26.

    Schulz, K. P. et al. Striatal activation predicts differential therapeutic responses to methylphenidate and atomoxetine. J. Am. Acad. Child Adolesc. Psychiatry 56, 602–609. e2 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 27.

    Korgaonkar, M. S. et al. Diffusion tensor imaging predictors of treatment outcomes in major depressive disorder. Br. J. Psychiatry 205, 321–328 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 28.

    Reis Marques, T. et al. White matter integrity as a predictor of response to treatment in first episode psychosis. Brain 137, 172–182 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 29.

    Bollettini, I. et al. Disruption of white matter integrity marks poor antidepressant response in bipolar disorder. J. Affect. Disord. 174, 233–240 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 30.

    Elliott, G. R. et al. Cognitive testing to identify children with ADHD who do and do not respond to methylphenidate. J. Atten. Disord. 21, 1151–1160 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • 31.

    Sheehan, D. V. et al. The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 59, 22–33 (1998).

    PubMed 

    Google Scholar
     

  • 32.

    Breukelaar, I. A. et al. Cognitive control network anatomy correlates with neurocognitive behavior: a longitudinal study. Hum. Brain Mapp. 38, 631–643 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Hickie, I. B. et al. Development of a simple screening tool for common mental disorders in general practice. Med J. Aus. 175, S10–S17 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • 35.

    Thomas Yeo, B. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate – a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).


    Google Scholar
     

  • 37.

    Zhang, Y. & Yang, Y. Cross-validation for selecting a model selection procedure. J. Econ. 187, 95–112 (2015).

    Article 

    Google Scholar
     

  • 38.

    R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).

  • 39.

    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article 

    Google Scholar
     

  • 40.

    Karatzoglou, A. et al. kernlab – An S4 package for Kernel methods in R. J. Stat. Softw. 11, 1–20 (2004).

    Article 

    Google Scholar
     

  • 41.

    Durston, S. et al. Differential patterns of striatal activation in young children with and without ADHD. Biol. Psychiatry 53, 871–878 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • 42.

    Silk, T. J. et al. Structural development of the basal ganglia in attention deficit hyperactivity disorder: a diffusion tensor imaging study. Psychiatry Res. 172, 220–225 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • 43.

    Levy, F. The dopamine theory of attention deficit hyperactivity disorder (ADHD). Aust. N. Z. J. Psychiatry 25, 277–283 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 44.

    Graybiel, A. M. The basal ganglia. Curr. Biol. 10, R509–R511 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 45.

    Arnsten, A. F. Stimulants: therapeutic actions in ADHD. Neuropsychopharmacol. 31, 2376 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Uddin, L. Q. et al. Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. J. Neurosci. 31, 18578–18589 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 47.

    Morgan, S. E. et al. A network neuroscience approach to typical and atypical brain development. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 754–766 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 49.

    Whitaker, K. J. et al. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc. Natl Acad. Sci. USA 113, 9105–9110 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 50.

    Maier-Hein, K. H. et al. The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8, 1–13 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 51.

    Barbeau, E. B., Descoteaux, M. & Petrides, M. Dissociating the white matter tracts connecting the temporo-parietal cortical region with frontal cortex using diffusion tractography. Sci. Rep. 10, 1–13 (2020).

    Article 
    CAS 

    Google Scholar
     

  • 52.

    Petrides, M. & Pandya, D. N. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 228, 105–116 (1984).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 53.

    van Ewijk, H. et al. Different mechanisms of white matter abnormalities in attention-deficit/hyperactivity disorder: a diffusion tensor imaging study. J. Am. Acad. Child Adolesc. Psychiatry 53, 790–799. e3 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 54.

    Korgaonkar, M. S. et al. Intrinsic connectomes are a predictive biomarker of remission in major depressive disorder. Mol. Psychiatry 25, 1537–1549 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 55.

    Farquharson, S. et al. White matter fiber tractography: why we need to move beyond DTI. J. Neurosurg. 118, 1367–1377 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 56.

    Schweren, L. et al. Stimulant treatment history predicts frontal-striatal structural connectivity in adolescents with attention-deficit/hyperactivity disorder. Eur. Neuropsychopharmacol. 26, 674–683 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 57.

    Wu, Z.-M. et al. Linked anatomical and functional brain alterations in children with attention-deficit/hyperactivity disorder. NeuroImage Clin. 23, 101851 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here