The relevance of transdiagnostic shared networks to the severity of symptoms and cognitive deficits in schizophrenia: a multimodal brain imaging fusion study

0
53

  • 1.

    Insel, T. R. Rethinking schizophrenia. Nature 468, 187–193 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Clark, L. A., Cuthbert, B., Lewis-Fernandez, R., Narrow, W. E. & Reed, G. M. Three Approaches to Understanding and Classifying Mental Disorder: ICD-11, DSM-5, and the National Institute of Mental Health’s Research Domain Criteria (RDoC). Psychol. Sci. Publ. Int. 18, 72–145 (2017).

    Article 

    Google Scholar
     

  • 3.

    Ruderfer, D. M. et al. Genomic dissection of bipolar disorder and Schizophrenia, including 28 subphenotypes. Cell 173, 1705–170, https://doi.org/10.1016/j.cell.2018.05.046 (2018). ARTN 1715.e16.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 4.

    Reininghaus, U. et al. Transdiagnostic dimensions of psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). World Psychiatry 18, 67–76 (2019).

    Article 

    Google Scholar
     

  • 5.

    Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    Article 

    Google Scholar
     

  • 6.

    Kaufmann, T. et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat. Neurosci. 22, 1617–1623 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Cross-Disorder Group of the Psychiatric Genomics, C. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

    Article 

    Google Scholar
     

  • 8.

    Network & Pathway Analysis Subgroup of Psychiatric Genomics, C Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat. Neurosci. 18, 199–209 (2015).

  • 9.

    Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359, 693–697 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Buckley, P. F., Miller, B. J., Lehrer, D. S. & Castle, D. J. Psychiatric comorbidities and schizophrenia. Schizophrenia Bull. 35, 383–402 (2009).

    Article 

    Google Scholar
     

  • 11.

    Siu, M. W., Chong, C. S. & Lo, W. T. Prevalence and clinicians’ awareness of psychiatric comorbidities among first-episode schizophrenia. Early Intervention Psychiatry 12, 1128–1136 (2018).

    Article 

    Google Scholar
     

  • 12.

    Upthegrove, R., Marwaha, S. & Birchwood, M. Depression and schizophrenia: cause, consequence, or trans-diagnostic issue? Schizophrenia Bull. 43, 240–244 (2017).


    Google Scholar
     

  • 13.

    Ford, T. C., Apputhurai, P., Meyer, D. & Crewther, D. P. Confirmatory factor analysis of autism and schizophrenia spectrum traits. Pers Indiv Differ 110, 80–84. https://doi.org/10.1016/j.paid.2017.01.033 (2017).

    Article 

    Google Scholar
     

  • 14.

    Groom, M. J. et al. Cognitive deficits in early-onset schizophrenia spectrum patients and their non-psychotic siblings: a comparison with ADHD. Schizophrenia Res. 99, 85–95 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Koenders, L. et al. Brain volume in male patients with recent onset schizophrenia with and without cannabis use disorders. J. Psychiatry Neurosci. 40, 197–206 (2015).

    Article 

    Google Scholar
     

  • 16.

    Onwuameze, O. E. et al. MAPK14 and CNR1 gene variant interactions: effects on brain volume deficits in schizophrenia patients with marijuana misuse. Psychological Med. 43, 619–631 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Chen, H. et al. Shared atypical default mode and salience network functional connectivity between autism and schizophrenia. Autism Res. 10, 1776–1786 (2017).

    Article 

    Google Scholar
     

  • 18.

    Crump, C., Winkleby, M. A., Sundquist, K. & Sundquist, J. Comorbidities and mortality in persons with schizophrenia: a Swedish national cohort study. Am. J. Psychiatry 170, 324–333 (2013).

    Article 

    Google Scholar
     

  • 19.

    Sha, Z. Q., Wager, T. D., Mechelli, A. & He, Y. Common dysfunction of large-scale neurocognitive networks across psychiatric disorders. Biol. Psychiatry 85, 379–388 (2019).

    Article 

    Google Scholar
     

  • 20.

    Walters, R. K. et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat. Neurosci. 21, 1656–1669 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Jiang, R. et al. Multimodal data revealed different neurobiological correlates of intelligence between males and females. Brain Imag. Behavior. https://doi.org/10.1007/s11682-019-00146-z (2019).

  • 22.

    Qi, S. et al. Electroconvulsive therapy treatment responsive multimodal brain networks. Human Brain Mapping https://doi.org/10.1002/hbm.24910 (2020).

  • 23.

    Sui, J. et al. Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion. Nat. Commun. 9, 3028, https://doi.org/10.1038/s41467-018-05432-w (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Vergara, V. M., Weiland, B. J., Hutchison, K. E. & Calhoun, V. D. The impact of combinations of alcohol, nicotine, and cannabis on dynamic brain connectivity. Neuropsychopharmacology 43, 877–890 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Qi, S. et al. MicroRNA132 associated multimodal neuroimaging patterns in unmedicated major depressive disorder. Brain 141, 916–926 (2018).

    Article 

    Google Scholar
     

  • 26.

    Fu, Z. N. et al. Transient increased thalamic-sensory connectivity and decreased whole-brain dynamism in autism. Neuroimage 190, 191–204 (2019).

    Article 

    Google Scholar
     

  • 27.

    Turner, J. A. et al. A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia. Front. Neurosci. 7, 137, https://doi.org/10.3389/fnins.2013.00137 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Zhi, D. et al. Aberrant dynamic functional network connectivity and graph properties in major depressive disorder. Front. Psychiatry 9, 339, https://doi.org/10.3389/fpsyt.2018.00339 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Di Martino, A. et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19, 659–667 (2014).

    Article 

    Google Scholar
     

  • 30.

    Di Martino, A. et al. Data Descriptor: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Sci. Data 4, ARTN 170010, https://doi.org/10.1038/sdata.2017.10 (2017).

  • 31.

    van Erp, T. G. et al. Neuropsychological profile in adult schizophrenia measured with the CMINDS. Psychiatry Res. 230, 826–834 (2015).

    Article 

    Google Scholar
     

  • 32.

    Zou, Q. H. et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J. Neurosci. Methods 172, 137–141 (2008).

    Article 

    Google Scholar
     

  • 33.

    Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 26, 839–851 (2005).

    Article 

    Google Scholar
     

  • 34.

    Qi, S. et al. Multimodal fusion with reference: searching for joint neuromarkers of working memory deficits in Schizophrenia. IEEE Trans. Med. Imaging 37, 93–105 (2018).

    Article 

    Google Scholar
     

  • 35.

    Pergola, G., Selvaggi, P., Trizio, S., Bertolino, A. & Blasi, G. The role of the thalamus in schizophrenia from a neuroimaging perspective. Neurosci. Biobehav. Rev. 54, 57–75 (2015).

    Article 

    Google Scholar
     

  • 36.

    Samsom, J. N. & Wong, A. H. C. Schizophrenia an depression co-morbidity: what we have learned from animal models. Front. Psychiatry 6, ARTN 13, https://doi.org/10.3389/fpsyt.2015.00013 (2015).

  • 37.

    Allen, P. et al. Emerging temporal lobe dysfunction in people at clinical high risk for psychosis. Front. Psychiatry 10, ARTN 298, https://doi.org/10.3389/fpsyt.2019.00298 (2019).

  • 38.

    Hugdahl, K., Loberg, E. M. & Nygard, M. Left temporal lobe structural and functional abnormality underlying auditory hallucinations in schizophrenia. Front. Neurosci. 3, 34–45 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Amaral, D. G., Schumann, C. M. & Nordahl, C. W. Neuroanatomy of autism. Trends Neurosci. 31, 137–145 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Bedford, S. A. et al. Large-scale analyses of the relationship between sex, age and intelligence quotient heterogeneity and cortical morphometry in autism spectrum disorder. Mol. Psychiatry https://doi.org/10.1038/s41380-019-0420-6 (2019).

  • 41.

    Cai, J. et al. Increased left inferior temporal gyrus was found in both low function autism and high function autism. Front. Psychiatry 9, ARTN 542, https://doi.org/10.3389/fpsyt.2018.00542 (2018).

  • 42.

    Vaidya, C. J. Neurodevelopmental abnormalities in ADHD. Curr. Top. Behav. Neurosci. 9, 49–66 (2012).

    Article 

    Google Scholar
     

  • 43.

    Zhang, L. et al. Decreased middle temporal gyrus connectivity in the language network in schizophrenia patients with auditory verbal hallucinations. Neurosci. Lett. 653, 177–182 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 44.

    Liu, S. et al. Linked 4-way multimodal brain differences in Schizophrenia in a large Chinese Han population. Schizophrenia Bull. https://doi.org/10.1093/schbul/sby045 (2018).

  • 45.

    Schumann, G. et al. Stratified medicine for mental disorders. Eur. Neuropsychopharm. 24, 5–50 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Groenman, A. P., Janssen, T. W. P. & Oosterlaan, J. Childhood psychiatric disorders as risk factor for subsequent substance abuse: a meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 56, 556–569 (2017).

    Article 

    Google Scholar
     

  • 47.

    Qi, S. et al. Parallel group ICA+ICA: Joint estimation of linked functional network variability and structural covariation with application to schizophrenia. Human Brain Mapping https://doi.org/10.1002/hbm.24632 (2019).

  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here