The stress–Wnt-signaling axis: a hypothesis for attention-deficit hyperactivity disorder and therapy approaches

0
30

  • 1.

    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (APA, 2013).

  • 2.

    Polanczyk, G. V., Willcutt, E. G., Salum, G. A., Kieling, C. & Rohde, L. A. ADHD prevalence estimates across three decades: an updated systematic review and meta-regression analysis. Int. J. Epidemiol. https://doi.org/10.1093/ije/dyt261 (2014).

  • 3.

    Bron, T. I. et al. Prevalence of ADHD symptoms across clinical stages of major depressive disorder. J. Affect Disord. 197, 29–35 (2016).

    PubMed 

    Google Scholar
     

  • 4.

    Cabarkapa, S., King, J. A., Dowling, N. & Ng, C. H. Co-morbid obsessive-compulsive disorder and attention deficit hyperactivity disorder: neurobiological commonalities and treatment implications. Front. Psychiatry 10, 557 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Matthies, S. & Philipsen, A. Comorbidity of personality disorders and adult attention deficit hyperactivity disorder (ADHD)–review of recent findings. Curr. Psychiatry Rep. 18, 33 (2016).

    PubMed 

    Google Scholar
     

  • 6.

    Antshel, K. M., Zhang-James, Y., Wagner, K. E., Ledesma, A. & Faraone, S. V. An update on the comorbidity of ADHD and ASD: a focus on clinical management. Expert Rev. Neurother. 16, 279–293 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Verrotti, A. et al. The challenge of pharmacotherapy in children and adolescents with epilepsy-ADHD comorbidity. Clin. Drug Investig. 38, 1–8 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Bowling, A. B., Tiemeier, H. W., Jaddoe, V. W. V., Barker, E. D. & Jansen, P. W. ADHD symptoms and body composition changes in childhood: a longitudinal study evaluating directionality of associations. Pediatr. Obes. 13, 567–575 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Olusanya, B. O. et al. Developmental disabilities among children younger than 5 years in 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Global Health https://doi.org/10.1016/S2214-109X(18)30309-7 (2018).

  • 10.

    Hirsch, O., Chavanon, M., Riechmann, E. & Christiansen, H. Emotional dysregulation is a primary symptom in adult attention-deficit/hyperactivity disorder (ADHD). J. Affect Disord. 232, 41–47 (2018).

    PubMed 

    Google Scholar
     

  • 11.

    Retz, W., Stieglitz, R. D., Corbisiero, S., Retz-Junginger, P. & Rosler, M. Emotional dysregulation in adult ADHD: what is the empirical evidence? Expert Rev. Neurother. 12, 1241–1251 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Fatseas, M. et al. Addiction severity pattern associated with adult and childhood attention deficit hyperactivity disorder (ADHD) in patients with addictions. Psychiatry Res. 246, 656–662 (2016).

    PubMed 

    Google Scholar
     

  • 13.

    Jangmo, A. et al. Attention-deficit/hyperactivity disorder, school performance, and effect of medication. J. Am. Acad. Child Adolesc. Psychiatry 58, 423–432 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Arnold, L. E., Hodgkins, P., Kahle, J., Madhoo, M. & Kewley, G. Long-term outcomes of ADHD: academic achievement and performance. J. Atten. Disord. 24, 73–85 (2020).

    PubMed 

    Google Scholar
     

  • 15.

    Lange, H. et al. Accident proneness in children and adolescents affected by ADHD and the impact of medication. J. Atten. Disord. 20, 501–509 (2016).

    PubMed 

    Google Scholar
     

  • 16.

    Barkley, R. A. & Fischer, M. Hyperactive child syndrome and estimated life expectancy at young adult follow-up: the role of ADHD persistence and other potential predictors. J. Atten. Disord. 23, 907–923 (2019).

    PubMed 

    Google Scholar
     

  • 17.

    Joseph, A., Kosmas, C. E., Patel, C., Doll, H. & Asherson, P. Health-related quality of life and work productivity of adults with ADHD: a U.K. Web-Based Cross-Sectional Survey. J. Atten. Disord. 23, 1610–1623 (2019).

    PubMed 

    Google Scholar
     

  • 18.

    Shaw, P. et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.0707741104 (2007).

  • 19.

    Hoogman, M. et al. Brain Imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. Am. J. Psychiatry 176, 531–542 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Cortese, S. et al. Functional decoding and meta-analytic connectivity modeling in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry 80, 896–904 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Hermosillo, R. J. M. et al. Polygenic risk score-derived subcortical connectivity mediates attention-deficit/hyperactivity disorder diagnosis. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 330–341 (2020).

    PubMed 

    Google Scholar
     

  • 22.

    Guo, X. et al. Shared and distinct resting functional connectivity in children and adults with attention-deficit/hyperactivity disorder. Transl. Psychiatry 10, 65 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Qiu, M. G. et al. Changes of Brain structure and function in ADHD children. Brain Topogr. https://doi.org/10.1007/s10548-010-0168-4 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • 24.

    Bouziane, C. et al. ADHD and maturation of brain white matter: a DTI study in medication naive children and adults. Neuroimage Clin. 17, 53–59 (2018).

    PubMed 

    Google Scholar
     

  • 25.

    Faraone, S. V. & Larsson, H. Genetics of attention deficit hyperactivity disorder. Mol. Psychiatry 24, 562–575 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Grimm, O., Kranz, T. M. & Reif, A. Genetics of ADHD: what should the clinician know? Curr. Psychiatry Rep. 22, 18 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Curatolo, P., D’Agati, E. & Moavero, R. The neurobiological basis of ADHD. Ital. J. Pediatr. 36, 79 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Hodes, G. E. & Epperson, C. N. Sex differences in vulnerability and resilience to stress across the life span. Biol. Psychiatry 86, 421–432 (2019).

    PubMed 

    Google Scholar
     

  • 29.

    De Crescenzo, F., Cortese, S., Adamo, N. & Janiri, L. Pharmacological and non-pharmacological treatment of adults with ADHD: a meta-review. Evid. Based Ment. Health 20, 4–11 (2017).

    PubMed 

    Google Scholar
     

  • 30.

    Nakao, T., Radua, J., Rubia, K. & Mataix-Cols, D. Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am. J. Psychiatry 168, 1154–1163 (2011).

    PubMed 

    Google Scholar
     

  • 31.

    Frodl, T. & Skokauskas, N. Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr. Scand. https://doi.org/10.1111/j.1600-0447.2011.01786.x (2012).

  • 32.

    Walitza, S., Grünblatt, E., Brem, S., Brandeis, D. & Drechsler, R. Was können Biomarker heute leisten? Über den Einsatz von Biomarkern in der psychiatrischen Diagnostik am Beispiel der ADHS. PSYCH Up2date 9, 65–65 (2015).


    Google Scholar
     

  • 33.

    MacDonald, B. T., Tamai, K. & He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Goncalves, J. T., Schafer, S. T. & Gage, F. H. Adult neurogenesis in the hippocampus: from stem. Cells Behav. Cell 167, 897–914 (2016).

    CAS 

    Google Scholar
     

  • 35.

    Kawano, Y. & Kypta, R. Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 116, 2627–2634 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Niehrs, C. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 13, 767–779 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Harrison-Uy, S. J. & Pleasure, S. J. Wnt signaling and forebrain development. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a008094 (2012).

  • 38.

    Rao, T. P. & Kuhl, M. An updated overview on Wnt signaling pathways: a prelude for more. Circ. Res. 106, 1798–1806 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Jaworski, J. & Sheng, M. The growing role of mTOR in neuronal development and plasticity. Mol. Neurobiol. 34, 205–219 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Sawicka, K. & Zukin, R. S. Dysregulation of mTOR signaling in neuropsychiatric disorders: therapeutic implications. Neuropsychopharmacology 37, 305–306 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Ryskalin, L., Limanaqi, F., Frati, A., Busceti, C. L. & Fornai, F. mTOR-related brain dysfunctions in neuropsychiatric disorders. Int. J. Mol. Sci. 19, https://doi.org/10.3390/ijms19082226 (2018).

  • 42.

    Chadha, R. & Meador-Woodruff, J. H. Downregulated AKT-mTOR signaling pathway proteins in dorsolateral prefrontal cortex in schizophrenia. Neuropsychopharmacology https://doi.org/10.1038/s41386-020-0614-2 (2020).

  • 43.

    Zarogoulidis, P. et al. mTOR pathway: a current, up-to-date mini-review (review). Oncol. Lett. 8, 2367–2370 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Yang, Q. & Guan, K. L. Expanding mTOR signaling. Cell Res 17, 666–681 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Shaw, R. J. L. K. B. 1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol. (Oxf.) 196, 65–80 (2009).

    CAS 

    Google Scholar
     

  • 46.

    Crino, P. B. The mTOR signalling cascade: paving new roads to cure neurological disease. Nat. Rev. Neurol. 12, 379–392 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Fares, J., Diab, Bou, Nabha, Z., Fares, S. & Neurogenesis, Y. in the adult hippocampus: history, regulation, and prospective roles. Int J. Neurosci. 129, 598–611 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Kasherman, M. A., Premarathne, S., Burne, T. H. J., Wood, S. A. & Piper, M. The ubiquitin system: a regulatory hub for intellectual disability and autism spectrum disorder. Mol. Neurobiol. https://doi.org/10.1007/s12035-020-01881-x (2020).

  • 49.

    Sullivan, P. F., Daly, M. J. & O’Donovan, M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat. Rev. Genet. 13, 537–551 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Martin, A. R., Daly, M. J., Robinson, E. B., Hyman, S. E. & Neale, B. M. Predicting polygenic risk of psychiatric disorders. Biol. Psychiatry 86, 97–109 (2019).


    Google Scholar
     

  • 51.

    Sudre, G. et al. Mapping associations between polygenic risks for childhood neuropsychiatric disorders, symptoms of attention deficit hyperactivity disorder, cognition, and the brain. Mol. Psychiatry https://doi.org/10.1038/s41380-019-0350-3 (2019).

  • 52.

    Albaugh, M. D. et al. White matter microstructure is associated with hyperactive/inattentive symptomatology and polygenic risk for attention-deficit/hyperactivity disorder in a population-based sample of adolescents. Neuropsychopharmacology 44, 1597–1603 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet 51, 63–75 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Vuijk, P. J. et al. Translating discoveries in attention-deficit/hyperactivity disorder genomics to an outpatient child and adolescent psychiatric cohort. J. Am. Acad. Child Adolesc. Psychiatry https://doi.org/10.1016/j.jaac.2019.08.004 (2019).

  • 55.

    Zhong, Y. et al. The association with quantitative response to attention-deficit/hyperactivity disorder medication of the previously identified neurodevelopmental network genes. J. Child Adolesc. Psychopharmacol. https://doi.org/10.1089/cap.2018.0164 (2020).

  • 56.

    Lesch, K. P. et al. Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J. Neural Transm. 115, 1573–1585 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Aebi, M. et al. Gene-set and multivariate genome-wide association analysis of oppositional defiant behavior subtypes in attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 171, 573–588 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Weissflog, L. et al. KCNIP4 as a candidate gene for personality disorders and adult ADHD. Eur. Neuropsychopharmacol. 23, 436–447 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Rovira, P. et al. Shared genetic background between children and adults with attention deficit/hyperactivity disorder. Neuropsychopharmacology https://doi.org/10.1038/s41386-020-0664-5 (2020).

  • 60.

    Grünblatt, E. et al. The involvement of the canonical Wnt-signaling receptor LRP5 and LRP6 gene variants with ADHD and sexual dimorphism: Association Study and Meta-Analysis. Am. J. Med. Genet. 180, 365–376 (2019).

    PubMed 

    Google Scholar
     

  • 61.

    Wang, L. J. et al. Gray matter volume and microRNA levels in patients with attention-deficit/hyperactivity disorder. Eur. Arch. Psychiatry Clin. Neurosci. https://doi.org/10.1007/s00406-019-01032-x (2019).

  • 62.

    Grasby, K. L. et al. The genetic architecture of the human cerebral cortex. Science 367, https://doi.org/10.1126/science.aay6690 (2020).

  • 63.

    Grünblatt, E., Bartl, J. & Walitza, S. Methylphenidate enhances neuronal differentiation and reduces proliferation concomitant to activation of Wnt signal transduction pathways. Transl. Psychiatry 8, 51 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Sadasivan, S. et al. Methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice. PLoS ONE 7, e33693 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Dela Pena, I. et al. Neuronal development genes are key elements mediating the reinforcing effects of methamphetamine, amphetamine, and methylphenidate. Psychopharmacology 230, 399–413 (2013).


    Google Scholar
     

  • 66.

    Schwarz, R. et al. A preliminary study on methylphenidate-regulated gene expression in lymphoblastoid cells of ADHD patients. World J. Biol. Psychiatry 16, 180–189 (2015).

    PubMed 

    Google Scholar
     

  • 67.

    Sorokina, A. M. et al. Striatal transcriptome of a mouse model of ADHD reveals a pattern of synaptic remodeling. PLoS ONE 13, e0201553–e0201553 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Greenhill, L. L. et al. Impairment and deportment responses to different methylphenidate doses in children with ADHD: the MTA titration trial. J. Am. Acad. Child Adolesc. Psychiatry 40, 180–187 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Loureiro-Vieira, S. & Costa, V. M. de Lourdes Bastos, M., Carvalho, F. & Capela, J. P. Methylphenidate effects in the young brain: friend or foe? Int. J. Dev. Neurosci. 60, 34–47 (2017).

  • 70.

    Gerlach, M., Grünblatt, E. & Lange, K. W. Is the treatment with psychostimulants in children and adolescents with attention deficit hyperactivity disorder harmful for the dopaminergic system? Atten. Defic. Hyperact. Disord. 5, 71–81 (2013).

    PubMed 

    Google Scholar
     

  • 71.

    Tye, K. M. et al. Methylphenidate facilitates learning-induced amygdala plasticity. Nat. Neurosci. 13, 475–481 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Brown, R. T. et al. Treatment of attention-deficit/hyperactivity disorder: overview of the evidence. Pediatrics 115, e749–757 (2005).

    PubMed 

    Google Scholar
     

  • 73.

    Rubia, K., Halari, R., Christakou, A. & Taylor, E. Impulsiveness as a tinning disturbance: neurocognitive abnormalities in attention-deficit hyperactivity disorder during temporal processes and normalization with methylphenidate. Philos. Trans. R. Soc. B 364, 1919–1931 (2009).

    CAS 

    Google Scholar
     

  • 74.

    Shaw, P. et al. Psychostimulant treatment and the developing cortex in attention deficit hyperactivity disorder. Am. J. Psychiatry 166, 58–63 (2009).

    PubMed 

    Google Scholar
     

  • 75.

    Han, D. D. & Gu, H. H. Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol. 6, 1–7 (2006).


    Google Scholar
     

  • 76.

    Bartl, J. et al. Effects of methylphenidate: the cellular point of view. Atten. Defic. Hyperact Disord. 2, 225–232 (2010).

    PubMed 

    Google Scholar
     

  • 77.

    Bartl, J., Mori, T., Riederer, P., Ozawa, H. & Grunblatt, E. Methylphenidate enhances neural stem cell differentiation. J. Mol. Psychiatry 1, 5 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Bartl, J. et al. The impact of methylphenidate and its enantiomers on dopamine synthesis and metabolism in vitro. Prog. Neuropsychopharmacol. Biol. Psychiatry 79, 281–288 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Lee, T. H. et al. Effects of ADHD therapeutic agents, methylphenidate and atomoxetine, on hippocampal neurogenesis in the adolescent mouse dentate gyrus. Neurosci. Lett. 524, 84–88 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Bengoa-Vergniory, N. & Kypta, R. M. Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell Mol. Life Sci. 72, 4157–4172 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 81.

    Oakes, H. V. et al. Neurogenesis within the hippocampus after chronic methylphenidate exposure. J. Neural Transm. 126, 201–209 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 82.

    Bae, S. M. & Hong, J. Y. The Wnt signaling pathway and related therapeutic drugs in autism spectrum disorder. Clin. Psychopharmacol. Neurosci. 16, 129–135 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Mines, M. A. & Jope, R. S. Brain region differences in regulation of Akt and GSK3 by chronic stimulant administration in mice. Cell Signal 24, 1398–1405 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Sánchez-Alegría, K., Flores-León, M., Avila-Muñoz, E., Rodríguez-Corona, N. & Arias, C. PI3K signaling in neurons: a central node for the control of multiple functions. Int. J. Mol. Sci. 19, 3725–3725 (2018).

    PubMed Central 

    Google Scholar
     

  • 85.

    Lee, D. Y. Roles of mTOR signaling in brain development. Exp. Neurobiol. 24, 177–177 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Schmitz, F., Chao, M. V. & Wyse, A. T. S. Methylphenidate alters Akt-mTOR signaling in rat pheochromocytoma cells. Int. J. Dev. Neurosci. 73, 10–18 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 87.

    Makrides, M., Neumann, M., Simmer, K., Gibson, R. & Pater, J. Are long-chain polyunsaturated fatty acids essential nutrients in infancy? Lancet 345, 1463–1468 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 88.

    Emery, S. et al. Omega-3 and its domain-specific effects on cognitive test performance in youths: a meta-analysis. Neurosci. Biobehav. Rev. 112, 420–436 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Mischoulon, D. & Freeman, M. P. Omega-3 fatty acids in psychiatry. Psychiatr. Clin. North Am. 36, 15–23 (2013).

    PubMed 

    Google Scholar
     

  • 90.

    Zhao, W. N. et al. Activation of WNT and CREB signaling pathways in human neuronal cells in response to the Omega-3 fatty acid docosahexaenoic acid (DHA). Mol. Cell. Neurosci. 99, 103386–103386 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Yu, J. Z., Wang, J., Sheridan, S. D., Perlis, R. H. & Rasenick, M. M. N-3 polyunsaturated fatty acids promote astrocyte differentiation and neurotrophin production independent of cAMP in patient-derived neural stem cells. Mol. Psychiatry 435, 147, https://doi.org/10.1038/s41380-020-0786-5 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 92.

    Shi, J. P., Fu, W. & Liu, J. <Omega>-3 PUFA attenuates LPS-induced neuro-injury of neonatal rats through the PI3K/AKT pathway. Neuroscience 414, 112–127 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 93.

    Descorbeth, M., Figueroa, K., Serrano-Illan, M. & De Leon, M. Protective effect of docosahexaenoic acid on lipotoxicity-mediated cell death in Schwann cells: implication of PI3K/AKT and mTORC2 pathways. Brain Behav. 8, e01123 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Hammamieh, R. et al. Transcriptomic analysis of the effects of a fish oil enriched diet on murine brains. PLoS ONE 9, e90425 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 95.

    Richardson, A. J. & Montgomery, P. The Oxford-Durham Study: a randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics 115, 1360–1366 (2005).

    PubMed 

    Google Scholar
     

  • 96.

    Knochel, C. et al. Omega 3 fatty acids: novel neurotherapeutic targets for cognitive dysfunction in mood disorders and schizophrenia? Curr. Neuropharmacol. 13, 663–680 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 97.

    Liu, J. J. & Green, P. John Mann, J., Rapoport, S. I. & Sublette, M. E. Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain Res. 1597, 220–246 (2015).

  • 98.

    Bos, D. J., van Montfort, S. J., Oranje, B., Durston, S. & Smeets, P. A. Effects of omega-3 polyunsaturated fatty acids on human brain morphology and function: what is the evidence? Eur. Neuropsychopharmacol. 26, 546–561 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Sonuga-Barke, E. J. S. et al. Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments. Am. J. Psychiatry 170, 275–289 (2013).

    PubMed 

    Google Scholar
     

  • 100.

    Fuentes-Albero, M., Martínez-Martínez, M. I. & Cauli, O. Omega-3 long-chain polyunsaturated fatty acids intake in children with attention deficit and hyperactivity disorder. Brain Sci. 9, 120–120 (2019).

    CAS 
    PubMed Central 

    Google Scholar
     

  • 101.

    Yonezawa, K. et al. Investigation into the plasma concentration of ω3 polyunsaturated fatty acids in Japanese attention-deficit hyperactivity disorder patients. J. Neural Transm. 125, 1395–1400 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 102.

    Parletta, N., Niyonsenga, T. & Duff, J. Omega-3 and omega-6 polyunsaturated fatty acid levels and correlations with symptoms in children with attention deficit hyperactivity disorder, autistic spectrum disorder and typically developing controls. PLoS ONE 11, e0156432 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 103.

    Chang, J. P., Su, K. P., Mondelli, V. & Pariante, C. M. Omega-3 polyunsaturated fatty acids in youths with attention deficit hyperactivity disorder: a systematic review and meta-analysis of clinical trials and biological studies. Neuropsychopharmacology 43, 534–545 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 104.

    Lopez-Vicente, M. et al. Prenatal omega-6:omega-3 ratio and attention deficit and hyperactivity disorder symptoms. J. Pediatr. 209, 204–211.e204 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 105.

    Gustafsson, P. A. et al. EPA supplementation improves teacher-rated behaviour and oppositional symptoms in children with ADHD. Acta Paediatr. 99, 1540–1549 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 106.

    Richardson, A. J. & Puri, B. K. A randomized double-blind, placebo-controlled study of the effects of supplementation with highly unsaturated fatty acids on ADHD-related symptoms in children with specific learning difficulties. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 26, 233–239 (2002).

    CAS 

    Google Scholar
     

  • 107.

    Rodríguez, C. et al. Supplementation with high-content docosahexaenoic acid triglyceride in attention-deficit hyperactivity disorder: a randomized double-blind placebo-controlled trial. Neuropsychiatr. Dis. Treat. 15, 1193–1209 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 108.

    San Mauro Martin, I. et al. Impulsiveness in children with attention-deficit/hyperactivity disorder after an 8-week intervention with the Mediterranean diet and/or omega-3 fatty acids: a randomised clinical trial. Neurologia https://doi.org/10.1016/j.nrl.2019.09.007 (2019).

  • 109.

    Widenhorn-Müller, K., Schwanda, S., Scholz, E., Spitzer, M. & Bode, H. Effect of supplementation with long-chain ω-3 polyunsaturated fatty acids on behavior and cognition in children with attention deficit/hyperactivity disorder (ADHD): a randomized placebo-controlled intervention trial. Prostaglandins Leukot. Essent. Fat. Acids 91, 49–60 (2014).


    Google Scholar
     

  • 110.

    Chang, J. P. et al. High-dose eicosapentaenoic acid (EPA) improves attention and vigilance in children and adolescents with attention deficit hyperactivity disorder (ADHD) and low endogenous EPA levels. Transl. Psychiatry 9, 303 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 111.

    Bloch, M. H. & Qawasmi, A. Omega-3 fatty acid supplementation for the treatment of children with attention-deficit/hyperactivity disorder symptomatology: systematic review and meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 50, 991–1000 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 112.

    Bartl, J., Walitza, S. & Grünblatt, E. Enhancement of cell viability after treatment with polyunsaturated fatty acids. Neurosci. Lett. 559, 56–60 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 113.

    Firouzkouhi Moghaddam, M., Shamekhi, M. & Rakhshani, T. Effectiveness of methylphenidate and PUFA for the treatment of patients with ADHD: a double-blinded randomized clinical trial. Electron. Physician 9, 4412–4418 (2017).


    Google Scholar
     

  • 114.

    Anand, P. & Sachdeva, A. Effect of poly unsaturated fatty acids administration on children with attention deficit hyperactivity disorder: a randomized controlled trial. J. Clin. Diagn. Res. 10, OC01–OC05 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 115.

    Mozaffari-Khosravi, H., Yassini-Ardakani, M., Karamati, M. & Shariati-Bafghi, S. E. Eicosapentaenoic acid versus docosahexaenoic acid in mild-to-moderate depression: a randomized, double-blind, placebo-controlled trial. Eur. Neuropsychopharmacol. 23, 636–644 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 116.

    Jazayeri, S. et al. Comparison of therapeutic effects of omega-3 fatty acid eicosapentaenoic acid and fluoxetine, separately and in combination, in major depressive disorder. Aust. N.Z. J. Psychiatry 42, 192–198 (2008).

    PubMed 

    Google Scholar
     

  • 117.

    Pusceddu, M. M., Kelly, P., Stanton, C., Cryan, J. F. & Dinan, T. G. N-3 polyunsaturated fatty acids through the lifespan: implication for psychopathology. Int. J. Neuropsychopharmacol. 19, 1–23 (2016).

    CAS 

    Google Scholar
     

  • 118.

    Shirooie, S. et al. Targeting mTORs by omega-3 fatty acids: a possible novel therapeutic strategy for neurodegeneration? Pharmacol. Res. 135, 37–48 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 119.

    Giacobbe, J., Benoiton, B., Zunszain, P., Pariante, C. M. & Borsini, A. The anti-inflammatory role of omega-3 polyunsaturated fatty acids metabolites in pre-clinical models of psychiatric, neurodegenerative, and neurological disorders. Front Psychiatry 11, 122 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 120.

    Deyama, S. et al. Resolvin D1 and D2 reverse lipopolysaccharide-induced depression-like behaviors through the mTORC1 signaling pathway. Int J. Neuropsychopharmacol. 20, 575–584 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 121.

    Deyama, S. et al. Resolvin E1/E2 ameliorate lipopolysaccharide-induced depression-like behaviors via ChemR23. Psychopharmacology 235, 329–336 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 122.

    Gillies, D., Sinn, J. K. H., Lad, S. S., Leach, M. J. & Ross, M. J. Polyunsaturated fatty acids (PUFA) for attention deficit hyperactivity disorder (ADHD) in children and adolescents. Cochrane Database of Syst. Rev. 2012, CD007986 (2012).

  • 123.

    Mohammadzadeh, S., Baghi, N., Yousefi, F. & Yousefzamani, B. Effect of omega-3 plus methylphenidate as an alternative therapy to reduce attention deficit-hyperactivity disorder in children. Korean J. Pediatrics 62, 360–366 (2019).

    CAS 

    Google Scholar
     

  • 124.

    Kiliaan, A. & Königs, A. Critical appraisal of omega-3 fatty acids in attention-deficit/hyperactivity disorder treatment. Neuropsychiatr. Dis. Treat. 12, 1869–1882 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 125.

    Mill, J. & Petronis, A. Pre- and peri-natal environmental risks for attention-deficit hyperactivity disorder (ADHD): the potential role of epigenetic processes in mediating susceptibility. J. Child Psychol. Psychiatry 49, 1020–1030 (2008).

    PubMed 

    Google Scholar
     

  • 126.

    Spiers, H. et al. Methylomic trajectories across human fetal brain development. Genome Res. 25, 338–352 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 127.

    Chan, J. C., Nugent, B. M. & Bale, T. L. Parental advisory: maternal and paternal stress can impact offspring neurodevelopment. Biol. Psychiatry 83, 886–894 (2018).

    PubMed 

    Google Scholar
     

  • 128.

    Sagiv, S. K., Epstein, J. N., Bellinger, D. C. & Korrick, S. A. Pre- and postnatal risk factors for ADHD in a nonclinical pediatric population. J. Atten. Disord. 17, 47–57 (2013).

    PubMed 

    Google Scholar
     

  • 129.

    Franke, B. et al. Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan. Eur. Neuropsychopharmacol. 28, 1059–1088 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 130.

    Thapar, A. et al. Prenatal smoking might not cause attention-deficit/hyperactivity disorder: evidence from a novel design. Biol. Psychiatry 66, 722–727 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 131.

    Knopik, V. S. et al. Smoking during pregnancy and ADHD risk: a genetically informed, multiple-rater approach. Am. J. Med. Genet. B Neuropsychiatr. Genet 171, 971–981 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 132.

    Sciberras, E., Mulraney, M., Silva, D. & Coghill, D. Prenatal risk factors and the etiology of ADHD—review of existing evidence. Curr. Psychiatry Rep. 19, 1 (2017).

    PubMed 

    Google Scholar
     

  • 133.

    Gustavson, K. et al. Smoking in pregnancy and child ADHD. Pediatrics 139, https://doi.org/10.1542/peds.2016-2509 (2017).

  • 134.

    Auerbach, J. G., Zilberman-Hayun, Y., Atzaba-Poria, N. & Berger, A. The contribution of maternal ADHD symptomatology, maternal DAT1, and home atmosphere to child ADHD symptomatology at 7 years of age. J. Abnorm. Child Psychol. 45, 415–427 (2017).

    PubMed 

    Google Scholar
     

  • 135.

    Wolford, E. et al. Maternal depressive symptoms during and after pregnancy are associated with attention-deficit/hyperactivity disorder symptoms in their 3- to 6-year-old children. PLoS ONE 12, e0190248 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 136.

    Okano, L., Ji, Y., Riley, A. W. & Wang, X. Maternal psychosocial stress and children’s ADHD diagnosis: a prospective birth cohort study. J. Psychosom. Obstetr. Gynecol. https://doi.org/10.1080/0167482X.2018.1468434 (2018).

  • 137.

    Alexander, N. et al. Impact of antenatal synthetic glucocorticoid exposure on endocrine stress reactivity in term-born children. J. Clin. Endocrinol. Metab. 97, 3538–3544 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 138.

    Odaka, H., Adachi, N. & Numakawa, T. Impact of glucocorticoid on neurogenesis. Neural Regen. Res. 12, 1028–1035 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 139.

    Moors, M. et al. Dickkopf 1 mediates glucocorticoid-induced changes in human neural progenitor cell proliferation and differentiation. Toxicol. Sci. https://doi.org/10.1093/toxsci/kfr304 (2012).

  • 140.

    Russell, V. A. et al. Response variability in attention-deficit/hyperactivity disorder: a neuronal and glial energetics hypothesis. Behav. Brain Funct. https://doi.org/10.1186/1744-9081-2-30 (2006).

  • 141.

    Bock, J., Breuer, S., Poeggel, G. & Braun, K. Early life stress induces attention-deficit hyperactivity disorder (ADHD)-like behavioral and brain metabolic dysfunctions: functional imaging of methylphenidate treatment in a novel rodent model. Brain Struct. Funct. 222, 765–780 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 142.

    Wilson, C. A., Vazdarjanova, A. & Terry, A. V. Exposure to variable prenatal stress in rats: effects on anxiety-related behaviors, innate and contextual fear, and fear extinction. Behav. Brain Res. https://doi.org/10.1016/j.bbr.2012.10.003 (2013).

  • 143.

    Sontag, T. A., Tucha, O., Walitza, S. & Lange, K. W. Animal models of attention deficit/hyperactivity disorder (ADHD): a critical review. Atten. Defic. Hyperact. Disord. 2, 1–20 (2010).

    PubMed 

    Google Scholar
     

  • 144.

    Grünblatt, E. et al. Characterization of cognitive deficits in spontaneously hypertensive rats, accompanied by brain insulin receptor dysfunction. J. Mol. Psychiatry https://doi.org/10.1186/s40303-015-0012-6 (2015).

  • 145.

    Cheng, P. W. et al. Wnt signaling regulates blood pressure by downregulating a GSK-3beta-mediated pathway to enhance insulin signaling in the central nervous system. Diabetes 64, 3413–3424 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 146.

    Bernardi, S. et al. The lifetime impact of attention deficit hyperactivity disorder: results from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Psychol. Med. 42, 875–887 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 147.

    Combs, M. A., Canu, W. H., Broman-Fulks, J. J., Rocheleau, C. A. & Nieman, D. C. Perceived stress and ADHD symptoms in adults. J. Atten. Disord. 19, 425–434 (2015).

    PubMed 

    Google Scholar
     

  • 148.

    Corominas-Roso, M. et al. Cortisol response to stress in adults with attention deficit hyperactivity disorder. Int. J. Neuropsychopharmacol. 18, https://doi.org/10.1093/ijnp/pyv027 (2015).

  • 149.

    Isaksson, J., Nilsson, K. W. & Lindblad, F. The Pressure–Activation–Stress scale in relation to ADHD and cortisol. Eur. Child Adolesc. Psychiatry https://doi.org/10.1007/s00787-014-0544-9 (2014).

  • 150.

    Kamradt, J. M., Momany, A. M. & Nikolas, M. A. A meta-analytic review of the association between cortisol reactivity in response to a stressor and attention-deficit hyperactivity disorder. Atten. Defic. Hyperact. Disord. https://doi.org/10.1007/s12402-017-0238-5 (2018).

  • 151.

    Scassellati, C., Bonvicini, C., Faraone, S. V. & Gennarelli, M. Biomarkers and attention-deficit/hyperactivity disorder: a systematic review and meta-analyses. J. Am. Acad. Child Adolesc. Psychiatry 51, 1003–1019 e1020 (2012).

    PubMed 

    Google Scholar
     

  • 152.

    Isaksson, J., Nilsson, K. W., Nyberg, F., Hogmark, Å. & Lindblad, F. Cortisol levels in children with attention-deficit/hyperactivity disorder. J. Psychiatr. Res. https://doi.org/10.1016/j.jpsychires.2012.08.021 (2012).

  • 153.

    Corominas, M. et al. Cortisol responses in children and adults with attention deficit hyperactivity disorder (ADHD): a possible marker of inhibition deficits. Atten. Defic. Hyperact. Disord. 4, 63–75 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 154.

    Berardelli, R. et al. Role of mineralocorticoid receptors on the hypothalamus-pituitary-adrenal axis in humans. Endocrine 43, 51–58 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 155.

    Criado-Marrero, M. et al. Dynamic expression of FKBP5 in the medial prefrontal cortex regulates resiliency to conditioned fear. Learn Mem. 24, 145–152 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 156.

    Isaksson, J., Allen, M., Nilsson, K. W. & Lindblad, F. Polymorphisms in the FK506 binding protein 5 gene are associated with attention deficit hyperactivity disorder and diurnal cortisol levels. Acta Paediatr. https://doi.org/10.1111/apa.13056 (2015).

  • 157.

    Zannas, A. S. & Binder, E. B. Gene-environment interactions at the FKBP5 locus: sensitive periods, mechanisms and pleiotropism. Genes Brain Behav. https://doi.org/10.1111/gbb.12104 (2014).

  • 158.

    Song, C., Li, X., Kang, Z. & Kadotomi, Y. Omega-3 fatty acid ethyl-eicosapentaenoate attenuates IL-1beta-induced changes in dopamine and metabolites in the shell of the nucleus accumbens: involved with PLA2 activity and corticosterone secretion. Neuropsychopharmacology 32, 736–744 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 159.

    Laugero, K. D. et al. Plasma omega 3 polyunsaturated fatty acid status and monounsaturated fatty acids are altered by chronic social stress and predict endocrine responses to acute stress in titi monkeys. Prostaglandins Leukot. Ess. Fat. Acids 84, 71–78 (2011).

    CAS 

    Google Scholar
     

  • 160.

    Larrieu, T. et al. Nutritional omega-3 modulates neuronal morphology in the prefrontal cortex along with depression-related behaviour through corticosterone secretion. Transl. Psychiatry 4, e437 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 161.

    Macfarlane, D. P., Forbes, S. & Walker, B. R. Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J. Endocrinol. 197, 189–204 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 162.

    Yager, S., Forlenza, M. J. & Miller, G. E. Depression and oxidative damage to lipids. Psychoneuroendocrinology 35, 1356–1362 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 163.

    Re, S. et al. Improved generation of induced pluripotent stem cells from hair derived keratinocytes—a tool to study neurodevelopmental disorders as ADHD. Front Cell Neurosci. 12, 321 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 164.

    Ross, C. A. & Akimov, S. S. Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Hum. Mol. Genet. 23, R17–R26 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 165.

    Sullivan, J. M., De Rubeis, S. & Schaefer, A. Convergence of spectrums: neuronal gene network states in autism spectrum disorder. Curr. Opin. Neurobiol. 59, 102–111 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here